Sadržaj:
- Korak 1: Potreban hardver:
- 2. korak: Spajanje hardvera:
- Korak 3: Kôd za mjerenje temperature:
- Korak 4: Aplikacije:
Video: Mjerenje temperature pomoću MCP9803 i Raspberry Pi: 4 koraka
2024 Autor: John Day | [email protected]. Zadnja promjena: 2024-01-30 09:35
MCP9803 je 2-žični osjetnik temperature visoke točnosti. Utjelovljeni su s programima koje programira korisnik i olakšavaju primjenu mjerenja temperature. Ovaj je senzor prikladan za visokosofisticirani višezonski sustav za praćenje temperature.
U ovom vodiču prikazano je povezivanje senzorskog modula MCP9803 s malinom pi, a prikazano je i njegovo programiranje pomoću jezika Java. Za očitanje temperaturnih vrijednosti koristili smo malinu pi s I2C adapterom. Ovaj I2C adapter čini povezivanje s senzorskim modulom lakim i pouzdanijim.
Korak 1: Potreban hardver:
Materijali koji su nam potrebni za postizanje našeg cilja uključuju sljedeće hardverske komponente:
1. MCP9803
2. Malina pi
3. I2C kabel
4. I2C štit za malinu pi
5. Ethernet kabel
2. korak: Spajanje hardvera:
Odjeljak hardverskog spajanja u osnovi objašnjava potrebne ožičenje potrebne veze između senzora i maline pi. Osiguravanje ispravnih veza osnovna je potreba tijekom rada na bilo kojem sustavu za željeni izlaz. Dakle, potrebne veze su sljedeće:
MCP9803 će raditi preko I2C. Evo primjera dijagrama ožičenja koji pokazuje kako spojiti svako sučelje senzora.
Out-of-box, ploča je konfigurirana za I2C sučelje, pa kao takvu preporučujemo korištenje ove veze ako ste inače agnostični.
Sve što trebate su četiri žice! Potrebna su samo četiri priključka Vcc, Gnd, SCL i SDA pinovi koji se povezuju pomoću I2C kabela.
Ove veze su prikazane na gornjim slikama.
Korak 3: Kôd za mjerenje temperature:
Prednost korištenja maline pi je ta što vam daje fleksibilnost programskog jezika u kojem želite programirati ploču kako biste s njom spojili senzor. Iskorištavajući ovu prednost ove ploče, ovdje dokazujemo da se radi o programiranju na Javi. Java kôd za MCP9803 može se preuzeti s naše Github zajednice koja je Dcube Store.
Osim radi lakšeg korištenja, kôd objašnjavamo i ovdje:
Kao prvi korak kodiranja, morate preuzeti knjižnicu pi4j u slučaju jave jer ova knjižnica podržava funkcije korištene u kodu. Dakle, za preuzimanje knjižnice možete posjetiti sljedeću vezu:
pi4j.com/install.html
Ovdje možete kopirati radni java kôd za ovaj senzor:
uvoz com.pi4j.io.i2c. I2CBus;
uvoz com.pi4j.io.i2c. I2CDevice;
uvoz com.pi4j.io.i2c. I2CFactory;
import java.io. IOException; javna klasa MCP9803
{
public static void main (String args ) baca iznimku
{
// Kreiranje sabirnice I2C
I2CBus sabirnica = I2CFactory.getInstance (I2CBus. BUS_1);
// Nabavite I2C uređaj, MCP9803 I2C adresa je 0x48 (72)
I2CDevice uređaj = Bus.getDevice (0x48);
// Odabir registra konfiguracije
// Način kontinuirane konverzije, uključivanje, usporedni način rada, 12-bitna razlučivost
device.write (0x01, (bajt) 0x60);
Navoj.spavanje (500);
// Očitavanje 2 bajta podataka s adrese 0x00 (0)
// temp msb, temp lsb
bajt podatak = novi bajt [2];
device.read (0x00, podaci, 0, 2);
// Pretvorimo podatke u 12-bitne
int temp = ((podaci [0] & 0xFF) * 256 + (podaci [1] & 0xF0)) / 16;
ako (temp> 2047)
{
temp -= 4096;
}
dvostruki cTemp = temp * 0,0625;
dvostruki fTemp = cTemp * 1,8 + 32;
// Izlaženje podataka na zaslon
System.out.printf ("Temperatura u Celzijusima je: %.2f C %n", cTemp);
System.out.printf ("Temperatura u Fahrenheitu je: %.2f F %n", fTemp);
}
}
Knjižnica koja olakšava i2c komunikaciju između senzora i ploče je pi4j, a njezini različiti paketi I2CBus, I2CDevice i I2CFactory pomažu u uspostavljanju veze.
uvoz com.pi4j.io.i2c. I2CBus;
uvoz com.pi4j.io.i2c. I2CDevice;
uvoz com.pi4j.io.i2c. I2CFactory;
import java.io. IOException;
write () i read () funkcije koriste se za pisanje određenih naredbi na senzor kako bi radio u određenom načinu rada i očitavanje izlaza senzora.
Izlaz senzora također je prikazan na gornjoj slici.
Korak 4: Aplikacije:
MCP9803 može se koristiti u širokom spektru uređaja koji uključuju osobno računalo i periferne uređaje, pogone tvrdih diskova, razne zabavne sustave, uredske sustave i sustave za podatkovnu komunikaciju. Ovaj se senzor može ugraditi u različite sofisticirane sustave.
Preporučeni:
Mjerenje temperature pomoću AD7416ARZ i Raspberry Pi: 4 koraka
Mjerenje temperature pomoću AD7416ARZ i Raspberry Pi: AD7416ARZ je 10-bitni temperaturni senzor s četiri jednokanalna analogno-digitalna pretvarača i ugrađenim osjetnikom temperature. Senzoru temperature na dijelovima može se pristupiti putem kanala multipleksera. Ova temperatura visoke preciznosti
Mjerenje temperature pomoću MCP9803 i Arduino Nano: 4 koraka
Mjerenje temperature pomoću MCP9803 i Arduino Nano: MCP9803 je 2-žični temperaturni osjetnik visoke točnosti. Utjelovljeni su s programima koje programira korisnik i olakšavaju primjenu mjerenja temperature. Ovaj je senzor prikladan za visokosofisticirani višezonski sustav za praćenje temperature. U
Mjerenje temperature pomoću MCP9803 i fotona čestica: 4 koraka
Mjerenje temperature pomoću MCP9803 i fotona čestica: MCP9803 je 2-žični temperaturni osjetnik visoke točnosti. Utjelovljeni su s programima koje programira korisnik i olakšavaju primjenu mjerenja temperature. Ovaj je senzor prikladan za visokosofisticirani višezonski sustav za praćenje temperature. U
Mjerenje temperature pomoću STS21 i Raspberry Pi: 4 koraka
Mjerenje temperature pomoću STS21 i Raspberry Pi: STS21 digitalni temperaturni senzor nudi vrhunske performanse i otisak koji štedi prostor. Pruža kalibrirane, linearizirane signale u digitalnom, I2C formatu. Izrada ovog senzora temelji se na CMOSens tehnologiji, što pripisuje vrhunskom
Mjerenje vlažnosti i temperature pomoću HTS221 i Raspberry Pi: 4 koraka
Mjerenje vlažnosti i temperature pomoću HTS221 i Raspberry Pi: HTS221 je ultra kompaktni kapacitivni digitalni senzor za relativnu vlažnost i temperaturu. Sadrži osjetni element i integrirani krug specifične primjene mješovitog signala (ASIC) za pružanje mjernih informacija putem digitalne serijske