Brazo Robótico Con Agarre Automático Y Movilidad: 7 koraka
Brazo Robótico Con Agarre Automático Y Movilidad: 7 koraka
Anonim
Brazo Robótico Con Agarre Automático Y Movilidad
Brazo Robótico Con Agarre Automático Y Movilidad

Los roboti a nivel tecnológico son los más utilizados en la industria debido a sus funcionalidades y Practicidad en los procesos de Manufaktura, gracias al nivel de trabajo y tiempo de producción que alcanzan se ha incrementado la implementación a nivel mundial permaitiendo con más raciocinio como gestión de la producción o proyección de ventas, debido a estas razones se tienen una amplia gama de kategorías y funcionalidades a nivel mundial.

La robótica está abarcando mercados internacionales, sobre todo, aquellos países industrializados, como Japón, Estados Unidos, Alemania y China que están avanzados en estos temas. Su desarrollo en robótica no se limita a solo palancas de brazo en el procesamiento automotriz o aeronaves militares sin pasajeros, sino que también abarcan en programas de salud como asistente en participación médicas. Como por ejemplo en China, existe un restaurante, en la parte norte en Harbin, en donde los camareros son robots. El uso de robots en las industrias, que realicen actividades que sean de suma Exactitud ha allowido su crecimiento en los últimos años. La evolución de sistemas robóticos se ha enfocado en realizar mejoras en esquemas críticos, como trabajar en situaciones extremas, lograr una precisión de movimientos, tener funcionalidad múltiple, logros en la adaptación en ambientes de trabajo forzosos y la autonomio de trabajo forzosos Entonces, debido a la usabilidad, el esquema propio y la construcción de prototipos de brazos robóticos para control, manipulación y tareas similares, deberían tener un valor acceble tanto para la industriala como para la base educacional, obzirna que este es un tema excelente como desarlo de proyectos, para la generación estudiantil.

Korak 1: Objetivos

  • Construir con conocimientos básicos de ingeniería un brazo electrónico o mecánico.
  • Que pueda ser usado para levantar objetos de bajo peso.
  • Upravljajte svojim pametnim telefonom.
  • Conseguir la automatización de una pinza al acercarle objetos.

Korak 2: Fundamentos Teóricos

Fundamentos Teóricos
Fundamentos Teóricos
Fundamentos Teóricos
Fundamentos Teóricos

Fundamentos de Programación: Para este trabajo se necesito conceptos básico y algunos avanzados de programción en “Arduino” para así conseguir la automatización de las piezas.

Fundamentos de mecánica: Para el proyecto necesitábamos conocer diferentes herramientas y concepto de mecánica para poder construir el brazo que sea funcional y movilizable.

Fundamentos de electrónica: Para poder construir los sistemas (protoboard) necesitamos conocimientos de electrónica y revisar instrucciones por la complejidad de estas piezas.

Korak 3: Materiales Y Herramientas De Trabajo

Materiales Y Herramientas De Trabajo
Materiales Y Herramientas De Trabajo
Materiales Y Herramientas De Trabajo
Materiales Y Herramientas De Trabajo
Materiales Y Herramientas De Trabajo
Materiales Y Herramientas De Trabajo

Materijali:

  • Servo digitalni
  • VL53L0X LASERSKI ToF osjetnik
  • Arduino mega 2560
  • Breadbord
  • Botón táctil
  • Resistencija 10K
  • Fuente de alimentación
  • Napajanje 5V/2A
  • Bluetooth kontroler x1
  • Brazo Mecánico
  • Tornillos x15

Herramientas:

  • Destornilladores de diferentes tamaños
  • Soldadora pequeña.
  • Pedazos de estaño.

Korak 4: Brazo Robótico

Brazo Robótico
Brazo Robótico
Brazo Robótico
Brazo Robótico
Brazo Robótico
Brazo Robótico

Primero debemos conseguir los planos de un brazo mecánico o por el contrario crear uno, después de esto, hacer los huecos y cálculos de donde irían los motores para controlor el robot de forma automática.

Korak 5: Conexión De Las Partes Electrónicas

Conexión De Las Partes Electrónicas
Conexión De Las Partes Electrónicas
Conexión De Las Partes Electrónicas
Conexión De Las Partes Electrónicas

La conexión de los modulos electrónicos es:

VL53L0X Laserski senzor -> Arduino Mega 2560

  • SDA - SDA
  • SCL - SCL
  • VCC - 5V
  • GND - GND

Servo -> Arduino Mega 2560

Señal (kabelska naranja) - 3

Servo -> 5V/2A napajanje

  • GND (kabelska marrona) - GND
  • VCC (kabelski rojo) - 5V

Pritisnite gumb -> Arduino Mega 2560

  • Pin 1 - 3,3 ili 5V
  • Pin 2 - 2 (medijan la resistencia de 10k a tierra)

Bluetooth (HC -06) -> Arduino Mega 2560

  • TXD - TX1 (19)
  • RXD - RX1 (18)
  • VCC - 5V
  • GND - GND

Korak 6: Código Arduino Mega

Código Arduino Mega
Código Arduino Mega
Código Arduino Mega
Código Arduino Mega

El program cumple la tarea de agarre automático de un objeto que ha sido detectado por el sensor láser VL53L0X. Antes de compiler y cargar el program de ejemplo, asegúrese de haber elegido "Arduino Mega 2560" como plataforma objetivo como se muestra arriba (Arduino IDE -> Herramientas -> Tablero -> Arduino Mega o Mega 2560). El program Arduino comprueba en el bucle principal - "loop vacío ()" si dobio llegado la nueva lectura del sensor láser (funkcija readRangeContinuousMillimeters ()). Ako ste udaljeni od senzora "distance_mm", gradonačelnik je que el valor "THRESHOLD_CLOSING_DISTANCE_FAR" o meniju "THRESHOLD_CLOSING_DISTANCE_NEAR", entonces el servo comienza a cerrarse. En otros casos, comienza a abrirse. En la siguiente parte del programa, en la función "digitalRead (gripperOpenButtonPin)", el estado del botón pulsador se controla constantemente y, si se presiona, la pinza se abrirá a pesar de estar cerrada debido a la proximidad del objeto. (distance_mm es menor que THRESHOLD_CLOSING_DISTANCE_NEAR).

Korak 7: Unión De Los Elementos

Image
Image

Después montamos las piezas y armamos el robot, instalando además la garra con el sensor de proximidad listo para su uso y lo colocamos sobre el carro a control remoto.

Preporučeni: